Efficient Heuristic to Minimize Makespan in Single Machine Scheduling Problem with Unrelated Parallel Machines
نویسندگان
چکیده
This paper discusses an efficient heuristic to minimize the makespan of scheduling n independent jobs on m unrelated parallel machines. The problem of scheduling the jobs on the unrelated parallel machines is combinatorial in nature. Hence, the heuristic approach is inevitable for quicker solution. In this paper, a simple and efficient heuristic is designed to minimize the makespan of scheduling n independent jobs on m unrelated parallel machines. A mathematical model is also presented for this problem. A factorial experiment is used to compare the results of the proposed heuristic with that of a mathematical model by taking “Method” (Heuristic and Model) as the first factor and “Problem Size” (No. of machines X No. of Jobs: 2X5, 2X6, ......, 2X9, 3X5, 3X6, ......, 3X9, ......., 5X5, 5X6, ...5X9) as the second factor. It is found that there is no significant difference between the results of the proposed heuristic and that of the mathematical model. Further, the mean percent error of the results obtained by the heuristic from the optimal results obtained by the model is 2.336 %. The heuristic gives optimal solution for 76.67 % of the problems.
منابع مشابه
Flexible flowshop scheduling with equal number of unrelated parallel machines
This article addresses a multi-stage flowshop scheduling problem with equal number of unrelated parallel machines. The objective is to minimize the makespan for a given set of jobs in the system. This problem class is NP-hard in the strong sense, so a hybrid heuristic method for sequencing and then allocating operations of jobs to machines is developed. A number of test problems are randomly ge...
متن کاملHeuristic approach to solve hybrid flow shop scheduling problem with unrelated parallel machines
In hybrid flow shop scheduling problem (HFS) with unrelated parallel machines, a set of n jobs are processed on k machines. A mixed integer linear programming (MILP) model for the HFS scheduling problems with unrelated parallel machines has been proposed to minimize the maximum completion time (makespan). Since the problem is shown to be NP-complete, it is necessary to use heuristic methods to ...
متن کاملSolving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کاملDesign and Comparison of Simulated Annealing Algorithm and GRASP to Minimize Makespan in Single Machine Scheduling with Unrelated Parallel Machines
This paper discusses design and comparison of Simulated Annealing Algorithm and Greedy Randomized Adaptive Search Procedure (GRASP) to minimize the makespan in scheduling n single operation independent jobs on m unrelated parallel machines. This problem of minimizing the makespan in single machine scheduling problem with uniform parallel machines is NP hard. Hence, heuristic development for suc...
متن کاملA bi-objective model for a scheduling problem of unrelated parallel batch processing machines with fuzzy parameters by two fuzzy multi-objective meta-heuristics
This paper considers a bi-objective model for a scheduling problem of unrelated parallel batch processing machines to minimize the makespan and maximum tardiness, simultaneously. Each job has a specific size and the data corresponding to its ready time, due date and processing time-dependent machine are uncertain and determined by trapezoidal fuzzy numbers. Each machine has a specific capacity,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intelligent Information Management
دوره 2 شماره
صفحات -
تاریخ انتشار 2010